Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Matthias Weil

Institute of Chemical Technologies and Analytics, Division of Structural Chemistry,
Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria

Correspondence e-mail:
mweil@mail.zserv.tuwien.ac.at

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{B})=0.002 \AA$
R factor $=0.022$
$w R$ factor $=0.056$
Data-to-parameter ratio $=31.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Re-investigation of $\mathrm{Cd}_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$: evidence of a centre of symmetry

The previously determined structure of cadmium diborate, $\mathrm{Cd}_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$, has been re-investigated and a change in spacegroup symmetry from $P 1$ to $P \overline{1}$ evidenced. $\mathrm{Cd}_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$ crystallizes isotypically with other triclinic members of the $M_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$ ($M=\mathrm{Mg}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Fe}$) family and is composed of slightly distorted $\left[\mathrm{CdO}_{6}\right]$ octahedra, forming ribbons built of four condensed single-chains and diborate anions, $\mathrm{B}_{2} \mathrm{O}_{5}{ }^{2-}$, which are composed of corner-sharing BO_{3} triangles and which interconnect adjacent ribbons.

Comment

$\mathrm{Cd}_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$ is an interesting host material for luminescent applications when doped with transition metal or rare earth ions. Its structure has been determined by Sokolova et al. (1979) and was described in space group P1. Comparison of the symmetry and lattice parameters of other $M_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$ members $[M=\mathrm{Co}$ (Berger, 1950), $\mathrm{Mg}, \mathrm{Fe}, \mathrm{Mn}$ (Block et al., 1959), Mg (Guo, Cheng, Chen, Huang \& Zhang, 1995)] and solid solutions $M M^{\prime} \mathrm{B}_{2} \mathrm{O}_{5}\left[M=\mathrm{Mn}, M^{\prime}=\mathrm{Mg}\right.$, Co (Utzolino \& Bluhm, 1996); $M=\mathrm{Zn}, M^{\prime}=\mathrm{Co}, \mathrm{Ni}$ (Busche \& Bluhm, 1995)], which all crystallize with similar lattice parameters in the centrosymmetric space group $P \overline{1}$, suggested a possible change in the space-group symmetry. Therefore the published atomic coordinates (Sokolova et al., 1979) were checked with the PLATON program (Spek, 2003) which, in fact, indicated a centre of symmetry within the default tolerances of the program. For experimental proof, single crystals of $\mathrm{Cd}_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$ were grown and the structure was redetermined in space group $P \overline{1}$.
$\mathrm{Cd}_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$ crystallizes isotypically with the triclinic representatives of the $M_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$ family mentioned above. For all these structures, two angles close to 90° are observed, indi-

Figure 1
Slice through the structure, approximately parallel to (011). The structure is plotted in polyhedral representation; $\left[\mathrm{Cd} 1 \mathrm{O}_{6}\right]$ octahedra are orange, [Cd2 O_{6}] octahedra are yellow and $\mathrm{B}_{2} \mathrm{O}_{5}$ groups are blue.

Received 27 May 2003
Accepted 2 June 2003 Online 17 June 2003

Figure 2
Projection of the crystal structure in polyhedral representation, viewed along [100]. [$\mathrm{Cd} 1 \mathrm{O}_{6}$] octahedra are orange, $\left[\mathrm{Cd} 2 \mathrm{O}_{6}\right]$ octahedra are yellow and $\mathrm{B}_{2} \mathrm{O}_{5}$ groups are blue.
cating a possible phase transition to the monoclinic crystal system. At least for $\mathrm{Mg}_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$, a synthetic monoclinic polymorph is described (Guo, Cheng, Chen, Zhuang et al. 1995), which is identical to the mineral Suanite (Takéuchi, 1952).

The crystal structure is composed of two crystallographically independent and distorted $\left[\mathrm{CdO}_{6}\right]$ octahedra, and $\mathrm{B}_{2} \mathrm{O}_{5}$ groups as the main building units. The [CdO_{6}] octahedra have mean $\mathrm{Cd}-\mathrm{O}$ distances of $2.303 \AA(\mathrm{Cd} 1)$ and $2.334 \AA(\mathrm{Cd} 2)$ and build chains running parallel to the [100] direction by edge-sharing (Fig. 1). Four of these chains are connected to form ribbons along the [011] direction (Fig. 2). Adjacent ribbons are held together by the interstitial $\mathrm{B}_{2} \mathrm{O}_{5}$ anions.

As in other diborate structures with two condensed BO_{3} triangles, the corresponding polyhedra are substantially distorted. The distances from B to the bridging atom O 4 are considerably longer than to the terminal atoms O1, O2, O3 and O 5 (see Table 1). The $\mathrm{B}-\mathrm{O}$ distances for the two independent BO_{3} triangles are very similar, and the average $\mathrm{B}-\mathrm{O}$ distances $[d(\mathrm{~B} 1-\mathrm{O})=1.377$ and $d(\mathrm{~B} 2-\mathrm{O})=1.381 \AA \mathrm{~A}]$ are in good agreement with the data for many other borate structures with BO_{3} groups (Zobetz, 1982). The $\mathrm{B}_{2} \mathrm{O}_{5}$ anion (Fig. 3) deviates significantly from coplanarity; the dihedral angle between the two slanting BO_{3} triangles is $13.1(1)^{\circ}$.

The O atoms $\mathrm{O} 1, \mathrm{O} 3$ and O 5 exhibit coordination number 4 and are each surrounded by three Cd and one B atom. O 2 has three coordination partners (two Cd and one B) with two short $\mathrm{Cd}-\mathrm{O}$ distances and a short $\mathrm{B}-\mathrm{O}$ distance. O 4 is the bridging atom of the diborate group and has an additional Cd atom with a long $\mathrm{Cd}-\mathrm{O}$ distance in its coordination environment.

Experimental

Stoichiometric amounts of CdCO_{3} (Merck, p. A.) and $\mathrm{H}_{3} \mathrm{BO}_{3}(10 \%$ excess, Merck, p. A.) were ground together finely in an agate mortar and charged in a platinum crucible which was heated to 1353 K over

Figure 3

The diborate anion, with anisotropic displacement ellipsoids drawn at the 90% probability level.
the course of 5 h , kept at that temperature for 1 h and cooled to 973 K over 4 d . The furnace was then shut off. After leaching with boiling demineralized water, colourless single crystals of $\mathrm{Cd}_{2} \mathrm{~B}_{2} \mathrm{O}_{5}$, with mainly plate-like habit and an edge-length of up to 2 mm , were isolated.

Crystal data

$\mathrm{Cd}_{2}\left(\mathrm{~B}_{2} \mathrm{O}_{5}\right)$
$M_{r}=326.42$
Triclinic, $P \overline{1}$
$a=3.4490(2) \AA$
$b=6.3603(5) \AA$
$c=9.9502(8) \AA$
$\alpha=105.441$ (8) ${ }^{\circ}$
$\beta=90.807(6)^{\circ}$
$\gamma=91.933(6)^{\circ}$
$V=210.22(3) \AA^{3}$
$Z=2$
$D_{x}=5.157 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=12.4-14.9^{\circ}$
$\mu=10.02 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.22 \times 0.14 \times 0.07 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: numerical
(HABITUS; Herrendorf, 1993-
1997)
$T_{\text {min }}=0.267, T_{\text {max }}=0.473$
5166 measured reflections
2584 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.056$
$S=1.13$
2584 reflections
83 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0307 P)^{2}\right.$
$+0.3225 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

2464 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=39.9^{\circ}$
$h=-6 \rightarrow 6$
$k=-11 \rightarrow 11$
$l=-17 \rightarrow 17$
3 standard reflections frequency: 500 min intensity decay: none
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=2.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-2.03 \mathrm{e} \AA^{-3}$

Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.238 (4)

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

Cd1-O1	2.2152 (15)	$\mathrm{Cd} 2-\mathrm{O} 1^{\text {iii }}$	2.3787 (16)
$\mathrm{Cd} 1-\mathrm{O} 5^{\text {i }}$	2.2544 (15)	$\mathrm{Cd} 2-\mathrm{O}^{\text {vi }}$	2.4004 (15)
$\mathrm{Cd} 1-\mathrm{O} 3^{\text {ii }}$	2.2993 (15)	$\mathrm{Cd} 2-\mathrm{O} 1^{\text {ii }}$	2.5603 (18)
Cd1-O5	2.3162 (15)	$\mathrm{B} 1-\mathrm{O} 2$	1.356 (3)
$\mathrm{Cd} 1-\mathrm{O} 5^{\text {ii }}$	2.3631 (15)	B1-O3	1.364 (2)
$\mathrm{Cd} 1-\mathrm{O}^{\text {iii }}$	2.3722 (15)	B1-O4	1.411 (3)
$\mathrm{Cd} 2-\mathrm{O}^{2 \mathrm{iv}}$	2.1853 (16)	$\mathrm{B} 2-\mathrm{O} 1^{\text {vii }}$	1.357 (2)
$\mathrm{Cd} 2-\mathrm{O} 2^{\text {v }}$	2.2071 (16)	B2-O5	1.364 (3)
$\mathrm{Cd} 2-\mathrm{O} 3$	2.2742 (15)	B2-O4	1.421 (3)
$\mathrm{O} 2-\mathrm{B} 1-\mathrm{O} 3$	122.46 (17)	$\mathrm{O}{ }^{\text {vii }}-\mathrm{B} 2-\mathrm{O} 4$	112.94 (16)
$\mathrm{O} 2-\mathrm{B} 1-\mathrm{O} 4$	116.53 (17)	$\mathrm{O} 5-\mathrm{B} 2-\mathrm{O} 4$	120.70 (17)
$\mathrm{O} 3-\mathrm{B} 1-\mathrm{O} 4$	120.97 (17)	B1-O4-B2	136.82 (16)
$\mathrm{O} 1^{\text {vii }}-\mathrm{B} 2-\mathrm{O} 5$	126.35 (18)		

The structure was refined with the atomic coordinates of the isomorphous solid solution $\mathrm{MnMgB}_{2} \mathrm{O}_{5}$ (Utzolino \& Bluhm, 1996) as starting parameters. The refined positional parameters were afterwards standardized using the program STRUCTURE-TIDY (Gelato \& Parthé, 1987). The highest difference peak is located at a distance of $0.59 \AA$ from Cd1, and the deepest hole $0.63 \AA$ from this atom.

Data collection: CAD-4 Software (Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA implemented in PLATON (Spek, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: SHELXL97.

References

Berger, S. V. (1950). Acta Chem. Scand. 4, 1054-1065.

Block, S., Burley, G., Perloff, A., Mason, R. D. (1959). J. Res. Natl Bur. Stand. 62, 95-100.
Busche, S. \& Bluhm, K. (1995). Z. Naturforsch. Teil B, 50, 1445-1449.
Dowty, E. (2000). ATOMS for Windows. Version 5.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Guo, G.-C., Cheng, W.-D., Chen, J.-T., Huang, J.-S. \& Zhang, Q.-E. (1995). Acta Cryst. C51, 351-352.
Guo, G.-C., Cheng, W.-D., Chen, J.-T., Zhuang, H.-H., Huang, J.-S. \& Zhang, Q.-E. (1995). Acta Cryst. C51, 2469-2471.

Herrendorf, W. (1993-97). HABITUS. Universities of Karlsruhe \& Gießen, Germany.
Nonius (1989). CAD-4 Software. Version 5.0. Delft Instruments, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sokolova, E. V., Simonov, M. A. \& Belov, N. V. (1979). Dokl. Akad. Nauk SSSR, 247, 603-606.
Spek, A. L. (2003). PLATON. Utrecht University, The Netherlands. Takéuchi, Y. (1952). Acta Cryst. 5, 574-581.
Utzolino, A. \& Bluhm, K. (1996). Z. Naturforsch. Teil B, 51, 912-916. Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.

